"The key tool for our HIV program is the humanized mouse model," explains Professor Facundo D. Batista, PhD, Associate and Scientific Director of the Ragon Institute and PI of the lab in which the mouse studies were conducted. "We knockin human B cell receptors identified as potential bnAb precursors, and we can then observe how they respond to immunogens as part of a complete mammalian immune system. We’ve used a CRISPR-based approach to develop mouse lines to interrogate several known conserved sites on the HIV Envelope for which our collaborators at Scripps have developed immunogens."
While first-author research scientists Zhenfei Xie, PhD, and Xuesong Wang, PhD, both carried out the work underpinning their respective Science and Science Immunology articles in the Batista lab at the Ragon Institute, each focused on a different conserved site on the HIV Env and a different aspect of the fundamental biology of immunization. Both scientists, however, came to a similar conclusion about delivery format: the mRNA-LNP system made famous by the Pfizer and Moderna COVID-19 vaccines was highly effective for HIV boost immunogens.
For Dr. Xie, the consilience between the work performed by the immunogen design team at Scripps, led by Prof. William Schief, and the immunobiological work in the Batista lab was the key factor. "bnAbs against HIV-1 are the uncommon outcome of a long journey in HIV-infected patients. Jon Steichen worked backwards from the co-evolutionary trajectory of the bnAb and the virus, understanding how their structures interact, and then we moved everything back into an in vivo model where we could start observing messier phenomena like antibody competition. That collaboration was central to demonstrating that these types of very site-specific boosts can work."
The preclinical platform can address more fundamental biological problems. B cell lines that might develop bnAbs are often rare in humans, and one way the Scripps team has sought to overcome that difficulty is by designing immunogens capable of engaging a wide array of B cell lineages with that potential - but would those B cells compete, limiting immunogen effectiveness? Dr. Wang produced a model with multiple potential precursors to CD4 binding site (CD4bs) bnAbs. "The mRNA-LNP prime-boosts Christ Cottrell developed not only induced multi-lineage precursor B cell responses, but also triggered bnAb-like affinity maturation," she confirmed. "Multiple lines could be matured in the same mouse at the same time."
Now, the challenge will be found in combining their work. "We're at the stage where there are an increasing number of immunogens in the pipeline targeting different Env sites," says Prof. Batista. "Ultimately, our hope is to bring these projects together and start to understand the best way to generate a response to multiple sites: that’s when you start really clamping down on the potential for viral escape. We already have this work underway."
Xie Z, Lin YC, Steichen JM, Ozorowski G, Kratochvil S, Ray R, Torres JL, Liguori A, Kalyuzhniy O, Wang X, Warner JE, Weldon SR, Dale GA, Kirsch KH, Nair U, Baboo S, Georgeson E, Adachi Y, Kubitz M, Jackson AM, Richey ST, Volk RM, Lee JH, Diedrich JK, Prum T, Falcone S, Himansu S, Carfi A, Yates JR 3rd, Paulson JC, Sok D, Ward AB, Schief WR, Batista FD.
mRNA-LNP HIV-1 trimer boosters elicit precursors to broad neutralizing antibodies.
Science. 2024 May 17;384(6697):eadk0582. doi: 10.1126/science.adk0582