"This is part of a larger study initiated 4 years ago in which we identified the role of this receptor in stress, but we did not know whether its activation would be sufficient to trigger all the changes. We now found that by altering the amount of this receptor alone in neurons from hippocampus and cortex - memory related areas - is sufficient to induce a profile that we designate as 'early-aging' combining the memory loss and an increase in stress hormones in plasma (cortisol)" - explains Luisa Lopes, Group Leader at iMM Lisboa and the coordinator of the study.
When the same animals were treated with a caffeine analogue, which blocks the action of adenosine A2A receptors, both memory and stress related deficits were normalized.
David Blum, from Inserm research director, adds: "In elderly people, we know there is an increase of stress hormones that have an impact on memory. Our work supports the view that the procognitive effects of A2AR antagonists, namely caffeine, observed in Alzheimer's and age-related cognitive impairments may rely on this ability to counteract the loss of stress controlling mechanisms that occurs upon aging"
This is important not only to understand the fundamental changes that occur upon aging, but it also identifies the dysfunctions of the adenosine A2A receptor as a key player in triggering these changes. And a very appealing therapeutic target" - concludes Luisa Lopes.
Batalha VL, Ferreira DG, Coelho JE, Valadas JS, Gomes R, Temido-Ferreira M, Shmidt T, Baqi Y, Buée L, Müller CE, Hamdane M, Outeiro TF, Bader M, Meijsing SH, Sadri-Vakili G, Blum D, Lopes LV.
The caffeine-binding adenosine A2A receptor induces age-like HPA-axis dysfunction by targeting glucocorticoid receptor function.
Sci Rep. 2016 Aug 11;6:31493. doi: 10.1038/srep31493.